How do you factor the trinomial x^ 2+ 6x +27?

2 Answers
Dec 16, 2015

can't be factored

Explanation:

D = b^2 - 4ac = 36 - 108 < 0.
Since D is not a perfect square, this trinomial can't be factored.

Dec 16, 2015

x^2+6x+27 = (x + 3 -3sqrt(2)i)(x + 3 +3sqrt(2)i)

Explanation:

To factor the trinomial, we can use the quadratic formula:

x=(-b+-sqrt(b^2-4ac))/(2a)

where:
a=1
b=6
c=27

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-(6)+-sqrt((6)^2-4(1)(27)))/(2(1))

x=(-6+-sqrt(36-108))/2

x=(-6+-sqrt(-72))/2

x=(-6+-6sqrt(-2))/2

x=(-6+-6sqrt(2)sqrt(-1))/2

x=(-6+-6sqrt(2)i)/2lArrsqrt(-1)=i

x=(2(-3+-3sqrt(2)i))/((2)1)

x=(color(red)cancelcolor(black)2(-3+-3sqrt(2)i))/((color(red)cancelcolor(black)2)1)

x=-3+-3sqrt(2)i

Hence factors:

(x + 3 -3sqrt(2)i)(x + 3+3sqrt(2)i)