How do you factor u^3 - 1u31?

1 Answer
Sep 23, 2015

u^3-1 = (u-1)(u^2+u+1)u31=(u1)(u2+u+1)

Explanation:

There is a useful 'difference of cubes' identity:

a^3-b^3 = (a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

In our example, a = ua=u and b = 1b=1 :

u^3-1 = u^3-1^3 = (u-1)(u^2+u*1+1^2) = (u-1)(u^2+u+1)u31=u313=(u1)(u2+u1+12)=(u1)(u2+u+1)

In fact, in general we find:

a^n - b^n = (a-b)(a^(n-1) + a^(n-2)b + a^(n-3)b^2 +...+ b^(n-1))

When you multiply it out, most of the terms cancel.

When n is even, the second factor can be factorised further:

a^(n-1) + a^(n-2)b + a^(n-3)b^2 +...+ b^(n-1)

= (a+b)(a^(n-2) + a^(n-4)b^2 + ... + b^(n-2))

There are no more linear factors with Real coefficients, but there are quadratic factors with Real coefficients.

For example:

a^6 - b^6 = (a-b)(a+b)(a^2-ab+b^2)(a^2+ab+b^2)