How do you factor v^2 +21v +30v2+21v+30?

1 Answer
Feb 20, 2017

v^2+21v+30 = (v+21/2-sqrt(321)/2)(v+21/2+sqrt(321)/2)v2+21v+30=(v+2123212)(v+212+3212)

Explanation:

Complete the square then use the difference of squares identity:

a^2-b^2=(a-b)(a+b)a2b2=(ab)(a+b)

with a=2v+21a=2v+21 and b=sqrt(321)b=321 as follows:

v^2+21v+30 = 1/4(4v^2+84v+120)v2+21v+30=14(4v2+84v+120)

color(white)(v^2+21v+30) = 1/4((2v)^2+2(2v)(21)+(21)^2-321)v2+21v+30=14((2v)2+2(2v)(21)+(21)2321)

color(white)(v^2+21v+30) = 1/4((2v+21)^2-(sqrt(321))^2)v2+21v+30=14((2v+21)2(321)2)

color(white)(v^2+21v+30) = 1/4((2v+21)-sqrt(321))((2v+21)+sqrt(321))v2+21v+30=14((2v+21)321)((2v+21)+321)

color(white)(v^2+21v+30) = 1/4(2v+21-sqrt(321))(2v+21+sqrt(321))v2+21v+30=14(2v+21321)(2v+21+321)

color(white)(v^2+21v+30) = (v+21/2-sqrt(321)/2)(v+21/2+sqrt(321)/2)v2+21v+30=(v+2123212)(v+212+3212)