How do you factor v^2 +21v +30v2+21v+30?
1 Answer
Explanation:
Complete the square then use the difference of squares identity:
a^2-b^2=(a-b)(a+b)a2−b2=(a−b)(a+b)
with
v^2+21v+30 = 1/4(4v^2+84v+120)v2+21v+30=14(4v2+84v+120)
color(white)(v^2+21v+30) = 1/4((2v)^2+2(2v)(21)+(21)^2-321)v2+21v+30=14((2v)2+2(2v)(21)+(21)2−321)
color(white)(v^2+21v+30) = 1/4((2v+21)^2-(sqrt(321))^2)v2+21v+30=14((2v+21)2−(√321)2)
color(white)(v^2+21v+30) = 1/4((2v+21)-sqrt(321))((2v+21)+sqrt(321))v2+21v+30=14((2v+21)−√321)((2v+21)+√321)
color(white)(v^2+21v+30) = 1/4(2v+21-sqrt(321))(2v+21+sqrt(321))v2+21v+30=14(2v+21−√321)(2v+21+√321)
color(white)(v^2+21v+30) = (v+21/2-sqrt(321)/2)(v+21/2+sqrt(321)/2)v2+21v+30=(v+212−√3212)(v+212+√3212)