How do you factor v^4+71v^2+70v4+71v2+70?

1 Answer
May 17, 2015

Notice that 71 = 70 + 171=70+1 and 70 = 70xx170=70×1.

So we can factor v^4+71v^2+70 = (v^2+70)(v^2 + 1)v4+71v2+70=(v2+70)(v2+1)

This is an instance of the identity:
(x+a)(x+b) = x^2 + (a+b)x + (axxb)(x+a)(x+b)=x2+(a+b)x+(a×b)

With x = v^2x=v2, a = 70a=70 and b = 1b=1.

There are no linear factors with real coefficients because

v^2 + 70 >= 70 > 0v2+7070>0 and v^2 + 1 >= 1 > 0v2+11>0 for all real values of vv.