How do you factor x^2+25x+150x2+25x+150?

1 Answer
Jan 3, 2017

x^2+25x+150=(x+10)(x+15)x2+25x+150=(x+10)(x+15)

Explanation:

We want to look for two numbers. These numbers should have a product of color(blue)150150 and a sum of color(red)2525.

Lets examine all the possible factors of 150150:

{:(ul"Product",,,," "ul"Sum"),(color(blue)150=,1xx150,=>,1+150,=151),(color(blue)150=,2xx75,=>,2+75,=77),(color(blue)150=,3xx50,=>,3+50,=53),(color(blue)150=,5xx30,=>,5+30,=35),(color(blue)150=,10xx15,=>,10+15,=color(red)25):}

So, the pair of numbers we're looking for are 10 and 15.

So, we see that

x^2+25x+150=(x+10)(x+15)

Check this by expanding it again:

(x+10)(x+15)=x(x+15)+10(x+15)

color(white)((x+10)(x+15))=(x^2+15x)+(10x+150)

color(white)((x+10)(x+15))=x^2+25x+150