How do you factor x^3 + 11x^2 + 28xx3+11x2+28x?

1 Answer
Jun 17, 2015

x^3+11x^2+28x = x(x^2+11x+28) = x(x+7)(x+4)x3+11x2+28x=x(x2+11x+28)=x(x+7)(x+4)

Explanation:

First identify the greatest common factor of all the terms, which is xx and separate that out as a factor:

x^3+11x^2+28x = x(x^2+11x+28)x3+11x2+28x=x(x2+11x+28)

The remaining quadratic factor must have factors of the form:

(x+a)(x+a), (x+b)(x+b), with a+b = 11a+b=11 and a * b = 28ab=28,

since (x+a)(x+b) = x^2+(a+b)x+ab(x+a)(x+b)=x2+(a+b)x+ab

The pair 7, 47,4 works.

Hence:

x^2+11x+28 = (x+7)(x+4)x2+11x+28=(x+7)(x+4)

and

x^3+11x^2+28x = x(x^2+11x+28) = x(x+7)(x+4)x3+11x2+28x=x(x2+11x+28)=x(x+7)(x+4)