How do you factor x^3+2x^2+14x+7x^2x3+2x2+14x+7x2?

2 Answers
Mar 20, 2017

See the entire solution process below:

Explanation:

First, group and combine like terms:

x^3 + 2x^2 + 7x^2 + 14x ->x3+2x2+7x2+14x

x^3 = (2 + 7)x^2 + 14xx3=(2+7)x2+14x

x^3 + 9x^2 + 14xx3+9x2+14x

Next, factor out an xx from each term in the expression:

(x * x^2) + (x * 9x) + (x * 14) ->(xx2)+(x9x)+(x14)

x(x^2 + 9x + 14)x(x2+9x+14)

Because 7 + 2 = 97+2=9 and 7 * 2 = 1472=14 we can factor the quadratic term as:

x(x + 7)(x + 2)x(x+7)(x+2)

Mar 20, 2017

x(x+2)(x+7)x(x+2)(x+7)

Explanation:

x^3+2x^2+14x+7x^2x3+2x2+14x+7x2

:.=x^3+2x^2+7x^2+14x

:.=x^3+9x^2+14x

:.=x(x^2+9x+14)

:.=x(x+2)(x+7)