How do you factor x^3 + 4 = 0x3+4=0?

1 Answer
Feb 13, 2016

x^3+4=(x+4^(1/3))(x^2-4^(1/3)x+4^(2/3))x3+4=(x+413)(x2413x+423)

= (x+4^(1/3))(x-2^(-1/3)(1+sqrt(3)i))(x-2^(-1/3)(1-sqrt(3)i))=(x+413)(x213(1+3i))(x213(13i))

Explanation:

Using the sum of cubes formula a^3+b^3 = (a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2) we have:

x^3+4 = x^3+(4^(1/3))^3x3+4=x3+(413)3

=(x+4^(1/3))(x^2-4^(1/3)x+4^(2/3))=(x+413)(x2413x+423)

If we wish to restrict ourselves to real numbers, we are done. If we allow for complex numbers, then we may continue using the quadratic formula to factor x^2-4^(1/3)x+4^(2/3)x2413x+423

x = (4^(1/3)+-sqrt(4^(2/3)-4(1)(4^(2/3))))/2x=413±4234(1)(423)2

=2^(-1/3)(1+-sqrt(-3))=213(1±3)

=2^(-1/3)(1+-sqrt(3)i)=213(1±3i)

Thus

x^3+4 = (x+4^(1/3))(x-2^(-1/3)(1+sqrt(3)i))(x-2^(-1/3)(1-sqrt(3)i))x3+4=(x+413)(x213(1+3i))(x213(13i))