How do you factor x^3 - 6x^2 + 3x - 10x36x2+3x10?

1 Answer
May 9, 2016

See explanation...

Explanation:

Use Cardano's method.

First a simple Tschirnhaus transformation, to eliminate the term of degree 22...

0 = x^3-6x^2+3x-10=(x-2)^3-9(x-2)-200=x36x2+3x10=(x2)39(x2)20

Let t=x-2t=x2 to get the simplified cubic equation:

t^3-9t-20 = 0t39t20=0

Next substitute t = u + vt=u+v to get:

u^3+v^3+3(uv-3)(u+v)-20 = 0u3+v3+3(uv3)(u+v)20=0

Add the constraint v = 3/uv=3u to eliminate the term in (u+v)(u+v) and get:

u^3+(3/u)^3-20=0u3+(3u)320=0

Multiply through by u^3u3 to get:

(u^3)^2-20(u^3)+27 = 0(u3)220(u3)+27=0

Use the quadratic formula to find:

u^3 = (20+-sqrt(20^2-(4*1*27)))/(2*1)u3=20±202(4127)21

=10+-sqrt(400-108)/2=10±4001082

=10+-sqrt(292)/2=10±2922

=10+-sqrt(4*73)/2=10±4732

=10+-sqrt(73)=10±73

The derivation was symmetric in uu and vv, hence (noting x = t+2x=t+2) we can deduce that the Real zero of the original cubic is:

x_1 = 2+root(3)(10-sqrt(73))+root(3)(10+sqrt(73))x1=2+31073+310+73

and Complex zeros:

x_2 = 2+omega root(3)(10-sqrt(73))+omega^2 root(3)(10+sqrt(73))x2=2+ω31073+ω2310+73

x_3 = 2+omega^2 root(3)(10-sqrt(73))+omega root(3)(10+sqrt(73))x3=2+ω231073+ω310+73

where omega = -1/2+sqrt(3)/2iω=12+32i is the primitive Complex cube root of 11.

Then:

x^3-6x^2+3x-10 = (x-x_1)(x-x_2)(x-x_3)x36x2+3x10=(xx1)(xx2)(xx3)