How do you factor x^3 - 6x^2 + 3x - 10x3−6x2+3x−10?
1 Answer
See explanation...
Explanation:
Use Cardano's method.
First a simple Tschirnhaus transformation, to eliminate the term of degree
0 = x^3-6x^2+3x-10=(x-2)^3-9(x-2)-200=x3−6x2+3x−10=(x−2)3−9(x−2)−20
Let
t^3-9t-20 = 0t3−9t−20=0
Next substitute
u^3+v^3+3(uv-3)(u+v)-20 = 0u3+v3+3(uv−3)(u+v)−20=0
Add the constraint
u^3+(3/u)^3-20=0u3+(3u)3−20=0
Multiply through by
(u^3)^2-20(u^3)+27 = 0(u3)2−20(u3)+27=0
Use the quadratic formula to find:
u^3 = (20+-sqrt(20^2-(4*1*27)))/(2*1)u3=20±√202−(4⋅1⋅27)2⋅1
=10+-sqrt(400-108)/2=10±√400−1082
=10+-sqrt(292)/2=10±√2922
=10+-sqrt(4*73)/2=10±√4⋅732
=10+-sqrt(73)=10±√73
The derivation was symmetric in
x_1 = 2+root(3)(10-sqrt(73))+root(3)(10+sqrt(73))x1=2+3√10−√73+3√10+√73
and Complex zeros:
x_2 = 2+omega root(3)(10-sqrt(73))+omega^2 root(3)(10+sqrt(73))x2=2+ω3√10−√73+ω23√10+√73
x_3 = 2+omega^2 root(3)(10-sqrt(73))+omega root(3)(10+sqrt(73))x3=2+ω23√10−√73+ω3√10+√73
where
Then:
x^3-6x^2+3x-10 = (x-x_1)(x-x_2)(x-x_3)x3−6x2+3x−10=(x−x1)(x−x2)(x−x3)