We start from the given 3rd degree polynomial
x^3+x^2-14x-24x3+x2−14x−24
Use the monomial -14x−14x
It is equal to -4x-10x−4x−10x
x^3+x^2-4x-10x-24x3+x2−4x−10x−24
Rearrange
x^3-4x+x^2-10x-24x3−4x+x2−10x−24
Regroup
(x^3-4x)+(x^2-10x-24)(x3−4x)+(x2−10x−24)
Factoring
x(x^2-4)+(x+2)(x-12)x(x2−4)+(x+2)(x−12)
x(x+2)(x-2)+(x+2)(x-12)x(x+2)(x−2)+(x+2)(x−12)
Factor out the common binomial factor (x+2)(x+2)
(x+2)[x(x-2)+(x-12)](x+2)[x(x−2)+(x−12)]
Simplify the expression inside the grouping symbol [ ]
(x+2)[x^2-2x+x-12](x+2)[x2−2x+x−12]
(x+2)(x^2-x-12)(x+2)(x2−x−12)
Factoring the trinomial x^2-x-12=(x+3)(x-4)x2−x−12=(x+3)(x−4)
We now have the factors
(x+2)(x+3)(x-4)(x+2)(x+3)(x−4)
Final answer
color(red)(x^3+x^2-14x-24=(x+2)(x+3)(x-4))x3+x2−14x−24=(x+2)(x+3)(x−4)
God bless ....I hope the explanation is useful.