How do you factor x^3+x^2-14x-24x3+x214x24?

1 Answer

color(red)(x^3+x^2-14x-24=(x+2)(x+3)(x-4))x3+x214x24=(x+2)(x+3)(x4)

Explanation:

We start from the given 3rd degree polynomial

x^3+x^2-14x-24x3+x214x24

Use the monomial -14x14x
It is equal to -4x-10x4x10x

x^3+x^2-4x-10x-24x3+x24x10x24

Rearrange

x^3-4x+x^2-10x-24x34x+x210x24

Regroup

(x^3-4x)+(x^2-10x-24)(x34x)+(x210x24)

Factoring

x(x^2-4)+(x+2)(x-12)x(x24)+(x+2)(x12)

x(x+2)(x-2)+(x+2)(x-12)x(x+2)(x2)+(x+2)(x12)

Factor out the common binomial factor (x+2)(x+2)

(x+2)[x(x-2)+(x-12)](x+2)[x(x2)+(x12)]

Simplify the expression inside the grouping symbol [ ]

(x+2)[x^2-2x+x-12](x+2)[x22x+x12]

(x+2)(x^2-x-12)(x+2)(x2x12)

Factoring the trinomial x^2-x-12=(x+3)(x-4)x2x12=(x+3)(x4)

We now have the factors

(x+2)(x+3)(x-4)(x+2)(x+3)(x4)

Final answer

color(red)(x^3+x^2-14x-24=(x+2)(x+3)(x-4))x3+x214x24=(x+2)(x+3)(x4)

God bless ....I hope the explanation is useful.