How do you factor x^3 - x^2 - 2x + 2=0x3x22x+2=0?

2 Answers
Mar 11, 2018

x = sqrt(2), x = -sqrt(2), x = 1x=2,x=2,x=1

Explanation:

Rewrite the equation
x^3 - x^2 - 2x + 2=0x3x22x+2=0
x^2(x - 1) - 2(x - 1)=0x2(x1)2(x1)=0
(x^2 - 2)(x - 1)=0(x22)(x1)=0
a^2 - b^2 = (a - b)(a+b)a2b2=(ab)(a+b)
x^2 - 2 = x^2 - (sqrt(2))^2 = (x - sqrt(2))(x + sqrt(2))x22=x2(2)2=(x2)(x+2)
(x - sqrt(2))(x + sqrt(2))(x - 1) = 0(x2)(x+2)(x1)=0
(x - sqrt(2)) = 0,(x + sqrt(2)) = 0, (x - 1) = 0 (x2)=0,(x+2)=0,(x1)=0
x = sqrt(2), x = -sqrt(2), x = 1x=2,x=2,x=1

Mar 11, 2018

(x-1)(x-sqrt2)(x+sqrt2)(x1)(x2)(x+2)

Explanation:

"note that the coefficients "1-1-2+2=0note that the coefficients 112+2=0

rArr(x-1)" is a factor"(x1) is a factor

"divide the polynomial by "(x-1)divide the polynomial by (x1)

color(red)(x^2)(x-1)cancel(color(magenta)(+x^2))cancel(-x^2)-2x+2

=color(red)(x^2)(x-1)color(red)(-2)(x-1)cancel(color(magenta)(-2))cancel(+2)

rArrx^3-x^2-2x+2=(x-1)(x^2-2)

x^2-2larrcolor(blue)"is a difference of squares"

•color(white)(x)a^2-b^2=(a-b)(a+b)

"with "a=x" and "b=sqrt2

rArrx^2-2=(x-sqrt2)(x+sqrt2)

rArrx^3-x^2-2x+2=0

rArr(x-1)(x-sqrt2)(x+sqrt2)=0

rArrx=1" or "x=+-sqrt2