How do you factor x^4-44x^2-245?

2 Answers
Apr 12, 2016

x^4-44x^2-245

=(x-7)(x+7)(x^2+5)

=(x-7)(x+7)(x-sqrt(5)i)(x+sqrt(5)i)

Explanation:

We use the difference of squares identity which may be written:

a^2-b^2 = (a-b)(a+b)

So:

x^4-44x^2-245

=(x^2-22)^2-22^2-245

=(x^2-22)^2-(484+245)

=(x^2-22)^2-729

=(x^2-22)^2-27^2

=((x^2-22)-27)((x^2-22)+27)

=(x^2-49)(x^2+5)

=(x^2-7^2)(x^2+5)

=(x-7)(x+7)(x^2+5)

If we allow Complex coefficients:

=(x-7)(x+7)(x^2-(sqrt(5)i)^2)

=(x-7)(x+7)(x-sqrt(5)i)(x+sqrt(5)i)

Apr 12, 2016

(x^2 + 5)(x - 7)(x + 7)

Explanation:

Another way to factor the expression -->
Call x^2 = X and factor the trinomial:
y = X^2 - 44X - 245.
Find 2 numbers knowing sum (-44) and product (-245). They have opposite signs because ac < 0,
Compose factor pairs of (-245) --> (-5, 49)(5, -49). This last sum is
(-44 = b). Then, the numbers are 5 and -49
y = (X + 5)(X - 49) . Replace X by x^2 -->
y = (x^2 + 5)(x^2 - 49)
y = (x^2 + 5)(x - 7)(x + 7)