How do you factor x^4 + 8x^3 - 2x^2 - 16xx4+8x3−2x2−16x?
1 Answer
Apr 9, 2016
x^4+8x^3-2x^2-16x=x(x-sqrt(2))(x+sqrt(2))(x+8)x4+8x3−2x2−16x=x(x−√2)(x+√2)(x+8)
Explanation:
First note that all of the terms are divisible by
x^4+8x^3-2x^2-16xx4+8x3−2x2−16x
=x(x^3+8x^2-2x-16)=x(x3+8x2−2x−16)
=x((x^3+8x^2)-(2x+16))=x((x3+8x2)−(2x+16))
=x(x^2(x+8)-2(x+8))=x(x2(x+8)−2(x+8))
=x(x^2-2)(x+8)=x(x2−2)(x+8)
=x(x-sqrt(2))(x+sqrt(2))(x+8)=x(x−√2)(x+√2)(x+8)