How do you factor x^4 + 8x^3 - 2x^2 - 16xx4+8x32x216x?

1 Answer
Apr 9, 2016

x^4+8x^3-2x^2-16x=x(x-sqrt(2))(x+sqrt(2))(x+8)x4+8x32x216x=x(x2)(x+2)(x+8)

Explanation:

First note that all of the terms are divisible by xx, so separate that out as a factor first, then factor by grouping...

x^4+8x^3-2x^2-16xx4+8x32x216x

=x(x^3+8x^2-2x-16)=x(x3+8x22x16)

=x((x^3+8x^2)-(2x+16))=x((x3+8x2)(2x+16))

=x(x^2(x+8)-2(x+8))=x(x2(x+8)2(x+8))

=x(x^2-2)(x+8)=x(x22)(x+8)

=x(x-sqrt(2))(x+sqrt(2))(x+8)=x(x2)(x+2)(x+8)