How do you factor x^4+x^2+1x4+x2+1?

3 Answers
May 10, 2015

x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 - x + 1)x4+x2+1=(x2+x+1)(x2x+1)

To find this, first notice that x^4 + x^2 + 1 > 0x4+x2+1>0 for all (real) values of xx. So there are no linear factors, only quadratic ones.

x^4 + x^2 + 1 = (ax^2 + bx + c)(dx^2 + ex + f)x4+x2+1=(ax2+bx+c)(dx2+ex+f)

Without bothering to multiply this out fully just yet, notice that the coefficient of x^4x4 gives us ad = 1ad=1. We might as well let a = 1a=1 and d = 1d=1.

... = (x^2 + bx + c)(x^2 + ex + f)=(x2+bx+c)(x2+ex+f)

Next, the coefficient of x^3x3 gives us b + e = 0b+e=0, so e = -be=b.

... = (x^2 + bx + c)(x^2 -bx + f)=(x2+bx+c)(x2bx+f)

The constant term gives us cf = 1cf=1, so either c = f = 1c=f=1 or c = f = -1c=f=1. Let's try c = f = 1c=f=1.

... = (x^2 + bx + 1)(x^2 - bx + 1)=(x2+bx+1)(x2bx+1)

Note that the coefficient of xx will vanish nicely when these are multiplied out.

Finally notice that the coefficient of x^2x2 is (1 - b^2 + 1) = 2 - b^2(1b2+1)=2b2, giving us 1 = 2 - b^21=2b2, thus b^2 = 1b2=1, so b = 1b=1 or b = -1b=1.

Nov 15, 2017

x^4+x^2+1 = (x^2-x+1)(x^2+x+1)x4+x2+1=(x2x+1)(x2+x+1)

Explanation:

This really makes a bit more sense in the complex numbers...

First note that:

(x^2-1)(x^4+x^2+1) = x^6-1(x21)(x4+x2+1)=x61

So zeros of x^4+x^2+1x4+x2+1 are also zeros of x^6-1x61.

What are the zeros of x^6-1x61?

The real zeros are 11 and -11, which are zeros of x^2-1x21, the factor we introduced. So the four zeros of x^4+x^2+1x4+x2+1 are the four complex zeros of x^6-1x61 apart from +-1±1.

Here are all 66 in the complex plane:

graph{((x-1)^2+(y-0)^2-0.002)((x-1/2)^2+(y-sqrt(3)/2)^2-0.002)((x+1/2)^2+(y-sqrt(3)/2)^2-0.002)((x+1)^2+(y-0)^2-0.002)((x+1/2)^2+(y+sqrt(3)/2)^2-0.002)((x-1/2)^2+(y+sqrt(3)/2)^2-0.002) = 0 [-2.5, 2.5, -1.25, 1.25]}

They form the vertices of a regular hexagon.

de Moivre's formula tells us that:

(cos theta + i sin theta)^n = cos n theta + i sin theta(cosθ+isinθ)n=cosnθ+isinθ

where ii is the imaginary unit, satisfying i^2=-1i2=1

For instance we find:

(cos (pi/3) + i sin (pi/3))^6 = cos 2pi + i sin 2pi = 1 + 0 = 1(cos(π3)+isin(π3))6=cos2π+isin2π=1+0=1

That's the zero 1/2+sqrt(3)/2i12+32i that we see in Q1.

If aa is a zero of a polynomial then (x-a)(xa) is a factor.

Hence:

x^4+x^2+1 = (x-1/2-sqrt(3)/2i)(x-1/2+sqrt(3)/2i)(x+1/2-sqrt(3)/2i)(x+1/2+sqrt(3)/2i)x4+x2+1=(x1232i)(x12+32i)(x+1232i)(x+12+32i)

color(white)(x^4+x^2+1) = (x^2-x+1)(x^2+x+1)x4+x2+1=(x2x+1)(x2+x+1)

For example:

(x-1/2-sqrt(3)/2i)(x-1/2+sqrt(3)/2i)(x1232i)(x12+32i)

=x^2-((1/2+color(red)(cancel(color(black)(sqrt(3)/2i))))+(1/2-color(red)(cancel(color(black)(sqrt(3)/2i)))))x+(1/2+sqrt(3)/2i)(1/2-sqrt(3/2)i)

=x^2-x+((1/2)^2-(sqrt(3)/2i)^2)

=x^2-x+(1/4-3/4i^2)

=x^2-x+(1/4+3/4)

=x^2-x+1

Nov 16, 2017

x^4+x^2+1 = (x^2+x+1)(x^2-x+1)

Explanation:

Given: x^4+x^2+1

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)

The difference of cubes identity can be written:

a^3-b^3 = (a-b)(a^2+ab+b^2)

The sum of cubes identity can be written:

a^3+b^3 = (a+b)(a^2-ab+b^2)

Note that:

(x^2-1)(x^4+x^2+1) = (x^2-1)((x^2)^2+(x^2)+1)

color(white)((x^2-1)(x^4+x^2+1)) = (x^2)^3-1^3

color(white)((x^2-1)(x^4+x^2+1)) = x^6-1

color(white)((x^2-1)(x^4+x^2+1)) = (x^3)^2-1^2

color(white)((x^2-1)(x^4+x^2+1)) = (x^3-1)(x^3+1)

color(white)((x^2-1)(x^4+x^2+1)) = (x^3-1^3)(x^3+1^3)

color(white)((x^2-1)(x^4+x^2+1)) = (x-1)(x^2+x+1)(x+1)(x^2-x+1)

color(white)((x^2-1)(x^4+x^2+1)) = (x^2-1)(x^2+x+1)(x^2-x+1)

Dividing both ends by (x^2-1) we get:

x^4+x^2+1 = (x^2+x+1)(x^2-x+1)