How do you factor x^6 - 27y^3 - x^4 - 3x^2y - 9y^2x627y3x43x2y9y2?

1 Answer
Jun 1, 2015

x^6-27y^3-x^4-3x^2y-9^2x627y3x43x2y92

=(x^2)^3-(x^2)^2-(x^2)(3y)-(3y)^2-(3y)^3=(x2)3(x2)2(x2)(3y)(3y)2(3y)3

= X^3-X^2-XY-Y^2-Y^3=X3X2XYY2Y3

...where X=x^2X=x2 and Y=3yY=3y.

= (X^3-Y^3)-(X^2+XY+Y^2)=(X3Y3)(X2+XY+Y2)

= (X-Y)(X^2+XY+Y^2) - (X^2+XY+Y^2)=(XY)(X2+XY+Y2)(X2+XY+Y2)

= (X-Y-1)(X^2+XY+Y^2)=(XY1)(X2+XY+Y2)

= ((x^2)-(3y)-1)((x^2)^2+(x^2)(3y)+(3y)^2)=((x2)(3y)1)((x2)2+(x2)(3y)+(3y)2)

= (x^2-3y-1)(x^4+3x^2y+9y^2)=(x23y1)(x4+3x2y+9y2)