How do you factor x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x +1?
1 Answer
= (x^2+x+1)(x^2-2cos((2 pi)/9)x+1)(x^2-2cos((4 pi)/9)x+1)(x^2-2cos((8 pi)/9)x+1)
Explanation:
Notice that if you multiply this polynomial by
So the zeros of this polynomial are all the Complex
Using the difference of cubes identity a couple of times, we find:
x^9-1 = (x^3)^3-1^3 = (x^3-1)(x^6+x^3+1) = (x-1)(x^2+x+1)(x^6+x^3+1)
Then we can divide both ends by
x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 = (x^2+x+1)(x^6+x^3+1)
No surprise there.
Note that the zeros of
The zeros of
e^((2k pi)/9i) = cos((2k pi)/9) + i sin((2k pi)/9)
with
The factors with Real coefficients, composed of Complex conjugate pairs are:
(x-cos((2k pi)/9)-i sin((2k pi)/9))(x-cos((2k pi)/9)+i sin((2k pi)/9))
=x^2-2cos((2k pi)/9)x+1
for
Hence:
x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
= (x^2+x+1)(x^2-2cos((2 pi)/9)x+1)(x^2-2cos((4 pi)/9)x+1)(x^2-2cos((8 pi)/9)x+1)