How do you factor ((x-y)^3) +8((x−y)3)+8?
1 Answer
Aug 18, 2016
=(x-y+2)(x^2-2xy+y^2-2x+2y+4)=(x−y+2)(x2−2xy+y2−2x+2y+4)
=(x-y+2)(x-y-1+sqrt(3)i)(x-y-1-sqrt(3)i)=(x−y+2)(x−y−1+√3i)(x−y−1−√3i)
Explanation:
The sum of cubes identity can be written:
a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)
Use this with
(x-y)^3+8(x−y)3+8
=(x-y)^3+2^3=(x−y)3+23
=((x-y)+2)((x-y)^2-(x-y)(2)+2^2)=((x−y)+2)((x−y)2−(x−y)(2)+22)
=(x-y+2)(x^2-2xy+y^2-2x+2y+4)=(x−y+2)(x2−2xy+y2−2x+2y+4)
If you allow Complex coefficients, then this factors further as:
=(x-y+2)(x-y+2omega)(x-y+2omega^2)=(x−y+2)(x−y+2ω)(x−y+2ω2)
where
=(x-y+2)(x-y-1+sqrt(3)i)(x-y-1-sqrt(3)i)=(x−y+2)(x−y−1+√3i)(x−y−1−√3i)