How do you factor ((x-y)^3) +8((xy)3)+8?

1 Answer
Aug 18, 2016

(x-y)^3+8(xy)3+8

=(x-y+2)(x^2-2xy+y^2-2x+2y+4)=(xy+2)(x22xy+y22x+2y+4)

=(x-y+2)(x-y-1+sqrt(3)i)(x-y-1-sqrt(3)i)=(xy+2)(xy1+3i)(xy13i)

Explanation:

The sum of cubes identity can be written:

a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

Use this with a=(x-y)a=(xy) and b=2b=2 to find:

(x-y)^3+8(xy)3+8

=(x-y)^3+2^3=(xy)3+23

=((x-y)+2)((x-y)^2-(x-y)(2)+2^2)=((xy)+2)((xy)2(xy)(2)+22)

=(x-y+2)(x^2-2xy+y^2-2x+2y+4)=(xy+2)(x22xy+y22x+2y+4)

If you allow Complex coefficients, then this factors further as:

=(x-y+2)(x-y+2omega)(x-y+2omega^2)=(xy+2)(xy+2ω)(xy+2ω2)

where omega = -1/2+sqrt(3)/2iω=12+32i is the primitive Complex cube root of 11

=(x-y+2)(x-y-1+sqrt(3)i)(x-y-1-sqrt(3)i)=(xy+2)(xy1+3i)(xy13i)