How do you find all real zeros of x^5 - x^4 - 3x^3 + 5x^2 - 2x = 0?

1 Answer
Apr 11, 2018

x^5-x^4-3x^3+5x^2-2x=x(x+2)(x-1)^3

Explanation:

The first real zero is easy. It's zero. We can factor out an x.

x^5-x^4-3x^3+5x^2-2x=x(x^4-x^3-3x^2+5x-2)

Now we note that when x=-2,

x^4-x^3-3x^2+5x-2

=(-2)^4-(-2)^3-3(-2)^2+5(-2)-2

=16-(-8)-3(4)-10-2=0.

This means that x+2 is a factor of x^4-x^3-3x^2+5x-2.

Let's factor x+2 from x^4-x^3-3x^2+5x-2.

x^4-x^3-3x^2+5x-2

= x^4+2x^3-3x^3-6x^2+3x^2+6x-x-2

=x^3(x+2)-3x^2(x+2)+3x(x+2)-(x+2)

=(x^3-3x^2+3x-1)(x+2)

Now we see that when x=1

x^3-3x^2+3x-1

=1^3-3(1)^2+3(1)-1=1-3+3-1=0.

This means that x-1 is a factor of x^3-3x^2+3x-1. Let's factor x-1 from x^3-3x^2+3x-1.

x^3-3x^2+3x-1

=x^3-x^2-2x^2+2x+x-1

=x^2(x-1)-2x(x-1)+(x-1)=(x^2-2x+1)(x-1)

Finally we recognize that

x^2-2x+1=(x-1)(x-1)

So putting it all together, we have

x^5-x^4-3x^3+5x^5-2x=x(x+2)(x-1)(x-1)(x-1)

=x(x+2)(x-1)^3.