How do you find all solutions for sin 2x = cos x for the interval [0,2pi]?

1 Answer
Apr 28, 2018

The solutions are S={1/2pi, 3/2pi, 1/6pi, 5/6pi}

Explanation:

We need

sin2x=2sinxcosx

Therefore,

sin2x=cosx

sin2x-cosx=0

2sinxcosx-cosx=0

cosx(2sinx-1)=0

So,

{(cosx=0),(2sinx-1=0):}

<=>, {(cosx=0),(sinx=1/2):}

<=>, {(x=pi/2 , 3/2pi),(x=1/6pi, 5/6pi):} AA x in [0, 2pi]

The solutions are S={1/2pi, 3/2pi, 1/6pi, 5/6pi}

graph{sin(2x)-cosx [-1.622, 9.475, -2.51, 3.04]}