How do you find all the zeros of f(x)=x^3-2x^2+x+1?
1 Answer
Use Cardano's method to find Real zero:
x_1 = 1/3(2+root(3)((29+3sqrt(93))/2)+root(3)((29-3sqrt(93))/2))
and Complex conjugate pair of related Complex root.
Explanation:
f(x) = x^3-2x^2+x+1
Descriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 4-4+32-27-36 = -31
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=27f(x)=27x^3-54x^2+27x+27
=(3x-2)^3-3(3x-2)+29
=t^3-3t+29
where
Cardano's method
We want to solve:
t^3-3t+29=0
Let
Then:
u^3+v^3+3(uv-1)(u+v)+29=0
Add the constraint
u^3+1/u^3+29=0
Multiply through by
(u^3)^2+29(u^3)+1=0
Use the quadratic formula to find:
u^3=(-29+-sqrt((29)^2-4(1)(1)))/(2*1)
=(29+-sqrt(841-4))/2
=(29+-sqrt(837))/2
=(29+-3sqrt(93))/2
Since this is Real and the derivation is symmetric in
t_1=root(3)((29+3sqrt(93))/2)+root(3)((29-3sqrt(93))/2)
and related Complex roots:
t_2=omega root(3)((29+3sqrt(93))/2)+omega^2 root(3)((29-3sqrt(93))/2)
t_3=omega^2 root(3)((29+3sqrt(93))/2)+omega root(3)((29-3sqrt(93))/2)
where
Now
x_1 = 1/3(2+root(3)((29+3sqrt(93))/2)+root(3)((29-3sqrt(93))/2))
x_2 = 1/3(2+omega root(3)((29+3sqrt(93))/2)+omega^2 root(3)((29-3sqrt(93))/2))
x_3 = 1/3(2+omega^2 root(3)((29+3sqrt(93))/2)+omega root(3)((29-3sqrt(93))/2))