How do you find all the zeros of f(x)=x^4-x^3-3x^2-x+1?

1 Answer
Aug 11, 2016

f(x) has zeros:

x_(1,2)=(1+sqrt(21)+-sqrt(6+2sqrt(21)))/4

x_(3,4)=(1-sqrt(21))/4+-sqrt(2sqrt(21)-6)/4i

Explanation:

f(x) = x^4-x^3-3x^2-x+1

Notice the symmetry of the coefficients: 1, -1, -3, -1, 1

So:

f(x)/x^2 = x^2-x-3-1/x-1/x^2=(x+1/x)^2-(x+1/x)-5

Let t = x+1/x

Then:

0 = t^2-t-5

= (t-1/2)^2-1/4-5

= (t-1/2)^2-(sqrt(21)/2)^2

= (t-1/2-sqrt(21)/2)(t-1/2+sqrt(21)/2)

So:

x+1/x = t = 1/2+-sqrt(21)/2

Multiply both ends by x and rearrange slightly to get:

x^2-(1/2+-sqrt(21)/2)x+1 = 0

Writing the solutions of these two possibilities separately, we have solutions given by the quadratic formula:

x_(1,2) = (1/2+sqrt(21)/2+-sqrt((1/2+sqrt(21)/2)^2-4))/2

=(1+sqrt(21)+-sqrt((1+sqrt(21))^2-16))/4

=(1+sqrt(21)+-sqrt(6+2sqrt(21)))/4

x_(3,4) = (1/2-sqrt(21)/2+-sqrt((1/2-sqrt(21)/2)^2-4))/2

=(1-sqrt(21)+-sqrt((1-sqrt(21))^2-16))/4

=(1-sqrt(21)+-sqrt(6-2sqrt(21)))/4

=(1-sqrt(21))/4+-sqrt(2sqrt(21)-6)/4i