How do you find all the zeros of x^3+2x^2-3x-3?
1 Answer
Use a trigonometric solution to find:
x_k = 1/3(-2+2sqrt(13) cos(1/3(arccos((11sqrt(13))/338) + 2kpi)))
k = 0, 1, 2
Explanation:
Using the rational root theorem we find that the only possible rational zeros are:
+-1 ,+-3
None of these work, so none of the zeros are rational.
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 36+108+96-243+324 = 321
Since
As a result, pure algebraic methods like Cardano's method will yield results containing irreducible cube roots of Complex numbers. So choose to use a trigonometric solution instead.
First, use a Tschirnhaus transformation to eliminate the square term...
27f(x) = 27x^3+54x^2-81x-81 = (3x+2)^3-39(3x+2)-11
Let
We want to solve:
t^3-39t-11 = 0
Next, use a substitution of the form:
t = 2sqrt(13) cos theta
The multiplier
0 = (2sqrt(13) cos theta)^3 - 39 (2sqrt(13) cos theta) - 11
=26sqrt(13)(4 cos^3 theta - 3 cos theta) - 11
=26sqrt(13)cos 3theta - 11
So:
cos 3 theta = 11/(26sqrt(13)) = (11sqrt(13))/338
theta = +-1/3(arccos((11sqrt(13))/338) + 2kpi)
cos theta = cos(1/3(arccos((11sqrt(13))/338) + 2kpi))
t = 2sqrt(13) cos(1/3(arccos((11sqrt(13))/338) + 2kpi))
x_k = 1/3(-2+2sqrt(13) cos(1/3(arccos((11sqrt(13))/338) + 2kpi))) which has distinct values for
k = 0, 1, 2
x_0 ~~ 1.4605048700187635
x_1 ~~ -2.699628148275318
x_2 ~~ -0.7608767217434455