How do you find all the zeros of x^3 + 2x^2 + 5x +1?
1 Answer
Use Cardano's method...
Explanation:
To cut down on the number of fractions we need to work with, multiply by
0 = 27f(x)
=27x^3+54x^2+135x+27
=(3x+2)^3+33(3x+2)-47
Substitute
=t^3+33t-47
Using Cardano's method, substitute
=u^3+v^3+3(uv+11)(u+v)-47
Add the constraint
=u^3-(11^3/u^3)-47
=u^3-1331/u^3-47
Multiply through by
(u^3)^2-47(u^3)-1331 = 0
Solve using the quadratic formula to get:
u^3 = (47+-sqrt(47^2+4*1331))/2
= (47+-sqrt(7533))/2
= (47+-9sqrt(93))/2
Since the derivation was symmetric in
t_1 = root(3)((47+9sqrt(93))/2) + root(3)((47-9sqrt(93))/2)
and the Complex roots:
t_2 = omega root(3)((47+9sqrt(93))/2) + omega^2 root(3)((47-9sqrt(93))/2)
t_3 = omega^2 root(3)((47+9sqrt(93))/2) + omega root(3)((47-9sqrt(93))/2)
where
Then
x_1 = 1/3(-2+root(3)((47+9sqrt(93))/2) + root(3)((47-9sqrt(93))/2) )
x_2 = 1/3(-2 + omega root(3)((47+9sqrt(93))/2) + omega^2 root(3)((47-9sqrt(93))/2))
x_3 = 1/3(-2 + omega^2 root(3)((47+9sqrt(93))/2) + omega root(3)((47-9sqrt(93))/2))