How do you find all the zeros of x^3-x^2+2x+1?

1 Answer
May 18, 2016

Use Cardano's method to find Real zero:

x_1 = 1/3(1+root(3)((-43+9sqrt(29))/2)+root(3)((-43-9sqrt(29))/2))

and Complex zeros.

Explanation:

Premultiply by 3^3 to cut down on arithmetic involving fractions:

0 = 3^3 (x^3-x^2+2x+1)

=27x^3-27x^2+54x+27

=(3x-1)^3+15(3x-1)+43

Let t = 3x-1 and solve:

t^3+15t+43 = 0

Using Cardano's method, let t = u + v

u^3+v^3+3(uv+5)(u+v)+43 = 0

Let v = -5/u to eliminate the term in (u+v)

u^3-5^3/u^3+43 = 0

Multiply through by u^3 to get a quadratic in u^3:

(u^3)^2+43(u^3)-125 = 0

Use the quadratic formula to find:

u^3 = (-43+-sqrt(43^2+(4*125)))/2

=(-43+-sqrt(1849+500))/2

=(-43+-sqrt(2349))/2

=(-43+-9sqrt(29))/2

The derivation was symmetric in u and v, so we can use one of these roots for u^3 and the other for v^3 to find the Real root of our cubic equation in t is:

t_1 = root(3)((-43+9sqrt(29))/2)+root(3)((-43-9sqrt(29))/2)

and Complex roots:

t_2 = omega root(3)((-43+9sqrt(29))/2)+omega^2 root(3)((-43-9sqrt(29))/2)

t_3 = omega^2 root(3)((-43+9sqrt(29))/2)+omega root(3)((-43-9sqrt(29))/2)

where omega = -1/2+sqrt(3)/2i is the primitive Complex cube root of 1.

Then x= 1/3(t+1), hence zeros of the original cubic in x:

x_1 = 1/3(1+root(3)((-43+9sqrt(29))/2)+root(3)((-43-9sqrt(29))/2))

x_2 = 1/3(1+omega root(3)((-43+9sqrt(29))/2)+omega^2 root(3)((-43-9sqrt(29))/2))

x_3 = 1/3(1+omega^2 root(3)((-43+9sqrt(29))/2)+omega root(3)((-43-9sqrt(29))/2))