How do you find all the zeros of x^3-x^2+2x+1?
1 Answer
Use Cardano's method to find Real zero:
x_1 = 1/3(1+root(3)((-43+9sqrt(29))/2)+root(3)((-43-9sqrt(29))/2))
and Complex zeros.
Explanation:
Premultiply by
0 = 3^3 (x^3-x^2+2x+1)
=27x^3-27x^2+54x+27
=(3x-1)^3+15(3x-1)+43
Let
t^3+15t+43 = 0
Using Cardano's method, let
u^3+v^3+3(uv+5)(u+v)+43 = 0
Let
u^3-5^3/u^3+43 = 0
Multiply through by
(u^3)^2+43(u^3)-125 = 0
Use the quadratic formula to find:
u^3 = (-43+-sqrt(43^2+(4*125)))/2
=(-43+-sqrt(1849+500))/2
=(-43+-sqrt(2349))/2
=(-43+-9sqrt(29))/2
The derivation was symmetric in
t_1 = root(3)((-43+9sqrt(29))/2)+root(3)((-43-9sqrt(29))/2)
and Complex roots:
t_2 = omega root(3)((-43+9sqrt(29))/2)+omega^2 root(3)((-43-9sqrt(29))/2)
t_3 = omega^2 root(3)((-43+9sqrt(29))/2)+omega root(3)((-43-9sqrt(29))/2)
where
Then
x_1 = 1/3(1+root(3)((-43+9sqrt(29))/2)+root(3)((-43-9sqrt(29))/2))
x_2 = 1/3(1+omega root(3)((-43+9sqrt(29))/2)+omega^2 root(3)((-43-9sqrt(29))/2))
x_3 = 1/3(1+omega^2 root(3)((-43+9sqrt(29))/2)+omega root(3)((-43-9sqrt(29))/2))