How do you find all zeros of f(x)=2x^4-2x^2-40?
1 Answer
Feb 5, 2017
Explanation:
Given:
f(x) = 2x^4-2x^2-40
We can first treat this as a quadratic in
a^2-b^2 = (a-b)(a+b)
as follows:
f(x) = 2x^4-2x^2-40
color(white)(f(x)) = 2((x^2)^2-x^2-20)
color(white)(f(x)) = 2(x^2-5)(x^2+4)
color(white)(f(x)) = 2(x^2-(sqrt(5))^2)(x^2-(2i)^2)
color(white)(f(x)) = 2(x-sqrt(5))(x+sqrt(5))(x-2i)(x+2i)
Hence zeros:
x = +-sqrt(5)" " or" "x = +-2i