How do you find all zeros of f(x)=5x^4+15x^2+10f(x)=5x4+15x2+10?

1 Answer
Dec 30, 2016

f(x)f(x) has zeros +-i±i and +-sqrt(2)i±2i

Explanation:

We will use the difference of squares identity, which can be written:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

with a=xa=x and b=ib=i or b=sqrt(2)ib=2i as follows:

f(x) = 5x^4+15x^2+10f(x)=5x4+15x2+10

color(white)(f(x)) = 5(x^4+3x^2+2)f(x)=5(x4+3x2+2)

color(white)(f(x)) = 5(x^2+1)(x^2+2)f(x)=5(x2+1)(x2+2)

color(white)(f(x)) = 5(x^2-i^2)(x^2-(sqrt(2)i)^2)f(x)=5(x2i2)(x2(2i)2)

color(white)(f(x)) = 5(x-i)(x+i)(x-sqrt(2)i)(x+sqrt(2)i)f(x)=5(xi)(x+i)(x2i)(x+2i)

Hence the zeros of f(x)f(x) are:

x = +-ix=±i

x = +-sqrt(2)ix=±2i