How do you find all zeros of f(x)=5x^4+15x^2+10f(x)=5x4+15x2+10?
1 Answer
Dec 30, 2016
Explanation:
We will use the difference of squares identity, which can be written:
a^2-b^2 = (a-b)(a+b)a2−b2=(a−b)(a+b)
with
f(x) = 5x^4+15x^2+10f(x)=5x4+15x2+10
color(white)(f(x)) = 5(x^4+3x^2+2)f(x)=5(x4+3x2+2)
color(white)(f(x)) = 5(x^2+1)(x^2+2)f(x)=5(x2+1)(x2+2)
color(white)(f(x)) = 5(x^2-i^2)(x^2-(sqrt(2)i)^2)f(x)=5(x2−i2)(x2−(√2i)2)
color(white)(f(x)) = 5(x-i)(x+i)(x-sqrt(2)i)(x+sqrt(2)i)f(x)=5(x−i)(x+i)(x−√2i)(x+√2i)
Hence the zeros of
x = +-ix=±i
x = +-sqrt(2)ix=±√2i