How do you find all zeros of the function f(x)=4x^2+29x+30?

1 Answer

x_1=-5/4 and x_2=-6

Explanation:

From the given equation f(x) = 4x^2+29x+30

Set f(x)=0

4x^2+29x+30=0

Try factoring

(4x+5)(x+6)=0

Set both factors to zero to solve for the roots

4x+5=0

4x=-5

x=-5/4 this is a zero

the other one

x+6=0

x=-6
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can use another method. Using the Quadratic Formula

x=(-b+-sqrt(b^2-4ac))/(2a)

From 4x^2+29x+30=0, let a=4 , b=29, c=30

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-29+-sqrt(29^2-4(4)(30)))/(2(4))

x=(-29+-sqrt(841-480))/(8)

x=(-29+-sqrt(361))/(8)

x=(-29+-19)/(8)

x_1=(-10)/(8)=-5/4

x_2=(-48)/(8)=-6

God bless....I hope the explanation is useful