How do you find all zeros with multiplicities of f(x)=x^6-3x^3-10?
1 Answer
The six zeros are:
x = root(3)(5)
x = -1/2root(3)(5)+-1/2sqrt(3)root(3)(5)i
x = -root(3)(2)
x = 1/2root(3)(2)+-1/2sqrt(3)root(3)(2)i
all with multiplicity
Explanation:
x^6-3x^3-10 = (x^3-5)(x^3+2)
Then:
x^3-5 = (x^3-(root(3)(5))^3)
color(white)(x^3-5) = (x-root(3)(5))(x^2+root(3)(5)x+root(3)(25))
color(white)(x^3-5) = (x-root(3)(5))((x+1/2root(3)(5))^2+(1/2sqrt(3)root(3)(5))^2)
color(white)(x^3-5) = (x-root(3)(5))((x+1/2root(3)(5))^2-(1/2sqrt(3)root(3)(5)i)^2)
color(white)(x^3-5) = (x-root(3)(5))(x+1/2root(3)(5)-1/2sqrt(3)root(3)(5)i)(x+1/2root(3)(5)+1/2sqrt(3)root(3)(5)i)
and:
x^3+2 = (x^3+(root(3)(2))^3)
color(white)(x^3+2) = (x+root(3)(2))(x^2-root(3)(2)x+root(3)(4))
color(white)(x^3+2) =(x+root(3)(2))((x-1/2root(3)(2))^2+(1/2sqrt(3)root(3)(2))^2)
color(white)(x^3+2) =(x+root(3)(2))((x-1/2root(3)(2))^2-(1/2sqrt(3)root(3)(2)i)^2)
color(white)(x^3+2) =(x+root(3)(2))(x-1/2root(3)(2)-1/2sqrt(3)root(3)(2)i)(x-1/2root(3)(2)+1/2sqrt(3)root(3)(2)i)
So the six zeros are:
x = root(3)(5)
x = -1/2root(3)(5)+-1/2sqrt(3)root(3)(5)i
x = -root(3)(2)
x = 1/2root(3)(2)+-1/2sqrt(3)root(3)(2)i