How do you find all zeros with multiplicities of f(x)=x^6-3x^3-10?

1 Answer
Dec 9, 2017

The six zeros are:

x = root(3)(5)

x = -1/2root(3)(5)+-1/2sqrt(3)root(3)(5)i

x = -root(3)(2)

x = 1/2root(3)(2)+-1/2sqrt(3)root(3)(2)i

all with multiplicity 1

Explanation:

x^6-3x^3-10 = (x^3-5)(x^3+2)

Then:

x^3-5 = (x^3-(root(3)(5))^3)

color(white)(x^3-5) = (x-root(3)(5))(x^2+root(3)(5)x+root(3)(25))

color(white)(x^3-5) = (x-root(3)(5))((x+1/2root(3)(5))^2+(1/2sqrt(3)root(3)(5))^2)

color(white)(x^3-5) = (x-root(3)(5))((x+1/2root(3)(5))^2-(1/2sqrt(3)root(3)(5)i)^2)

color(white)(x^3-5) = (x-root(3)(5))(x+1/2root(3)(5)-1/2sqrt(3)root(3)(5)i)(x+1/2root(3)(5)+1/2sqrt(3)root(3)(5)i)

and:

x^3+2 = (x^3+(root(3)(2))^3)

color(white)(x^3+2) = (x+root(3)(2))(x^2-root(3)(2)x+root(3)(4))

color(white)(x^3+2) =(x+root(3)(2))((x-1/2root(3)(2))^2+(1/2sqrt(3)root(3)(2))^2)

color(white)(x^3+2) =(x+root(3)(2))((x-1/2root(3)(2))^2-(1/2sqrt(3)root(3)(2)i)^2)

color(white)(x^3+2) =(x+root(3)(2))(x-1/2root(3)(2)-1/2sqrt(3)root(3)(2)i)(x-1/2root(3)(2)+1/2sqrt(3)root(3)(2)i)

So the six zeros are:

x = root(3)(5)

x = -1/2root(3)(5)+-1/2sqrt(3)root(3)(5)i

x = -root(3)(2)

x = 1/2root(3)(2)+-1/2sqrt(3)root(3)(2)i