How do you find cos(x/2) given sin(x)=1/4?

1 Answer
Oct 17, 2017

cos (x/2) = 0.99
cos (x/2) = 0.127

Explanation:

sin x = 1/4 . Find cos x
cos^2 x = 1 - sin^2 x = 1 - 1/16 = 15/16
cos x = +- sqrt15/4
There are 2 values of cos x because if sin x = 1/4, x could either be in Quadrant 1 or in Quadrant 2
Use trig identity:
2cos^2 (x/2) = 1 - cos 2a
In this case:
cos^2 (x/2) = 1/2 +- sqrt15/8 = 1/2 +- 0.484
a. cos^2 (x/2) = 0.984
b. cos^2 (x/2) = 0.016
a. cos (x/2) = sqrt(0.984) = 0.99
b. cos (x/2) = sqrt(0.016) = 0.127
Check with calculator.
a. cos (x/2) = 0.99 --> x/2 = 7^@27 --> x = 14^@53
sin (14^@52) = 0.25. Proved
b. cos (x/2) = 0.127 --> x/2 = 82^@70 --> x = 165^@41
sin (165^@41) = 0.25. Proved