How do you find cot 2B, given sin B = 12/13 and cos B < 0?

1 Answer
Nov 28, 2015

Find cot 2B, given sin B = 12/13 and cos B < 0

Ans: 119/120

Explanation:

sin B = 12/13.
Find cos B by the identity: cos^2 a + sin^2 a = 1
cos^2 B = 1 - sin^2 B = 1 - 144/169 = 25/169 --> cos B = +- 5/13.
cos B = - 5/13 (since cos B < 0)
Find: sin 2B = 2sin B.cos B = 2(12/13)(-5/13) = - 120/169
Find: cos 2B = 2cos^2 B - 1 = 2(25/169) - 1 = - 119/169.
Therefor: cot 2B = cos (2B)/(sin 2B) = -119/169(169/-120) = 119/120