How do you find #dy/dx# by implicit differentiation of #x^3+y^3=4xy+1# and evaluate at point (2,1)?

1 Answer
Oct 27, 2017

#8/5#

Explanation:

#d/(dx)(x^3+y^3=4xy+1)--(1)#

we will differentiate #wrt" "x#. Remembering that when differentiating #y# we multiply by #(dy)/(dx)# by virtue of the chain rule. Also on the #RHS # we will need the product rule on the first term

#(1)rarr3x^2+3y^2(dy)/(dx)=4y+4x(dy)/(dx)+0#

rearrange for #(dy)/(dx)#

#3y^2(dy)/(dx)-4x(dy)/(dx)=4y-3x^2#

#(dy)/(dx)(3y^2-4x)=4y-3x^2#

#=>(dy)/(dx)=(4y-3x^2)/(3y^2-4x)#

#:.[(dy)/(dx)]_(color(white)(=)(2,1))=(4xx1-3xx2^2)/(3xx1^2-4xx2#

#=(4-12)/(3-8)=-8/-5=8/5#