How do you find dydx given x3+y3=3xy2? Calculus Basic Differentiation Rules Chain Rule 1 Answer sjc Nov 17, 2016 dydx=(y+x)(y−x)y(y−2x) Explanation: ddx(x3+y3)=ddx(3xy2) the RHS will need the product rule. 3x2+3y2dydx=3y2+6xydydx rearrange fordydx, and simplify the algebra. 3y2dydx−6xydydx=3y2−3x2 dydx(3y2−6xy)=3(y2−x2) dydx=3(y+x)(y−x)3y(y−2x) dydx=(y+x)(y−x)y(y−2x) Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of y=6cos(x2) ? How do you find the derivative of y=6cos(x3+3) ? How do you find the derivative of y=ex2 ? How do you find the derivative of y=ln(sin(x)) ? How do you find the derivative of y=ln(ex+3) ? How do you find the derivative of y=tan(5x) ? How do you find the derivative of y=(4x−x2)10 ? How do you find the derivative of y=(x2+3x+5)14 ? How do you find the derivative of y=(1+x1−x)3 ? See all questions in Chain Rule Impact of this question 11282 views around the world You can reuse this answer Creative Commons License