How do you find dydx given x3+y3=3xy2?

1 Answer
Nov 17, 2016

dydx=(y+x)(yx)y(y2x)

Explanation:

ddx(x3+y3)=ddx(3xy2)

the RHS will need the product rule.

3x2+3y2dydx=3y2+6xydydx

rearrange fordydx, and simplify the algebra.

3y2dydx6xydydx=3y23x2

dydx(3y26xy)=3(y2x2)

dydx=3(y+x)(yx)3y(y2x)

dydx=(y+x)(yx)y(y2x)