How do you find #(dy)/(dx)# given #xcos(2x+3y)=ysinx#?

1 Answer
Apr 15, 2017

# dy/dx = (cos(2x+3y)-2xsin(2x+3y) - ycos x)/(sinx +3xsin(2x+3y))#

Explanation:

We have:

# xcos(2x+3y) = ysin x #

Method 1 - Implicit Differentiation

Applying the product rule and chain rule we get:

# (x)(d/dx cos(2x+3y))+(d/dx x )(cos(2x+3y)) = (y)(d/dxsin x)+(d/dx y)(sin x) #

# :. x(d/dx cos(2x+3y))+cos(2x+3y) = ycos x+sinx dy/dx #

# :. x(-sin(2x+3y)d/dx (2x+3y))+cos(2x+3y) = ycos x+sinx dy/dx #

# :. -xsin(2x+3y) (2+3dy/dx)+cos(2x+3y) = ycos x+sinx dy/dx #

Now we multiply out and collect terms:

# :. -2xsin(2x+3y) -3xsin(2x+3y)dy/dx+cos(2x+3y) = ycos x+sinx dy/dx #

Factoring out #dy/dx# we get:

# :. dy/dx(sinx + 3xsin(2x+3y)) = cos(2x+3y)-2xsin(2x+3y) - ycos x#

# :. dy/dx = (cos(2x+3y)-2xsin(2x+3y) - ycos x)/(sinx +3xsin(2x+3y))#

Method 2 - Using the Implicit Function Theorem:

# dy/dx = -((partial f)/dx)/((partial f)/dy) #

Where:

# f(x,y) = 0 #

We have:
Let:

# f(x,y) = xcos(2x+3y) - ysin x #

Then the partial derivatives are:

# (partial f)/(partial x) = (x)((partial )/(partial x) cos(2x+3y))+ ((partial )/(partial x)x)(cos(2x+3y)) - ycos x#

# \ \ \ \ \ \ \ = x( -2sin(2x+3y))+cos(2x+3y) - ycos x#

# \ \ \ \ \ \ \ = -2xsin(2x+3y)+cos(2x+3y) - ycos x#

And:

# (partial f)/(partial y) = -xsin(2x+3y)(3) - sin x#
# \ \ \ \ \ \ \ = -(3xsin(2x+3y) + sin x) #

And so:

# dy/dx = -(-2xsin(2x+3y)+cos(2x+3y) - ycos x)/(-(3xsin(2x+3y) + sin x)) #
# \ \ \ \ \ \ = (-2xsin(2x+3y)+cos(2x+3y) - ycos x)/(3xsin(2x+3y) + sin x) #