How do you find #(dy)/(dx)# given #xcos(2x+3y)=ysinx#?
1 Answer
# dy/dx = (cos(2x+3y)-2xsin(2x+3y) - ycos x)/(sinx +3xsin(2x+3y))#
Explanation:
We have:
# xcos(2x+3y) = ysin x #
Method 1 - Implicit Differentiation
Applying the product rule and chain rule we get:
# (x)(d/dx cos(2x+3y))+(d/dx x )(cos(2x+3y)) = (y)(d/dxsin x)+(d/dx y)(sin x) #
# :. x(d/dx cos(2x+3y))+cos(2x+3y) = ycos x+sinx dy/dx #
# :. x(-sin(2x+3y)d/dx (2x+3y))+cos(2x+3y) = ycos x+sinx dy/dx #
# :. -xsin(2x+3y) (2+3dy/dx)+cos(2x+3y) = ycos x+sinx dy/dx #
Now we multiply out and collect terms:
# :. -2xsin(2x+3y) -3xsin(2x+3y)dy/dx+cos(2x+3y) = ycos x+sinx dy/dx #
Factoring out
# :. dy/dx(sinx + 3xsin(2x+3y)) = cos(2x+3y)-2xsin(2x+3y) - ycos x#
# :. dy/dx = (cos(2x+3y)-2xsin(2x+3y) - ycos x)/(sinx +3xsin(2x+3y))#
Method 2 - Using the Implicit Function Theorem:
# dy/dx = -((partial f)/dx)/((partial f)/dy) #
Where:
# f(x,y) = 0 #
We have:
Let:
# f(x,y) = xcos(2x+3y) - ysin x #
Then the partial derivatives are:
# (partial f)/(partial x) = (x)((partial )/(partial x) cos(2x+3y))+ ((partial )/(partial x)x)(cos(2x+3y)) - ycos x#
# \ \ \ \ \ \ \ = x( -2sin(2x+3y))+cos(2x+3y) - ycos x#
# \ \ \ \ \ \ \ = -2xsin(2x+3y)+cos(2x+3y) - ycos x#
And:
# (partial f)/(partial y) = -xsin(2x+3y)(3) - sin x#
# \ \ \ \ \ \ \ = -(3xsin(2x+3y) + sin x) #
And so:
# dy/dx = -(-2xsin(2x+3y)+cos(2x+3y) - ycos x)/(-(3xsin(2x+3y) + sin x)) #
# \ \ \ \ \ \ = (-2xsin(2x+3y)+cos(2x+3y) - ycos x)/(3xsin(2x+3y) + sin x) #