How do you find dy/dx given y=ln(2+x^2)y=ln(2+x2)?

1 Answer
May 12, 2016

(2x)/(2+x^2)2x2+x2

Explanation:

Using d/dx(ln(f(x)))=1/f(x)ddx(ln(f(x)))=1f(x)

combined with the color(blue)" chain rule" chain rule

d/dx[f(g(x))]=f'(g(x)).g'(x)color(green)" A"
"------------------------------------------------"

here f(g(x))=ln(2+x^2)rArrf'(g(x))=1/(2+x^2)

and g(x)=2+x^2rArrg'(x)=2x
"---------------------------------------------------------------"
Substitute these values intocolor(green)" A"

rArrdy/dx=1/(2+x^2) xx2x=(2x)/(2+x^2)