How do you find dy/dx given y=ln(2+x^2)y=ln(2+x2)?
1 Answer
May 12, 2016
Explanation:
Using
d/dx(ln(f(x)))=1/f(x)ddx(ln(f(x)))=1f(x) combined with the
color(blue)" chain rule" chain rule
d/dx[f(g(x))]=f'(g(x)).g'(x)color(green)" A"
"------------------------------------------------" here
f(g(x))=ln(2+x^2)rArrf'(g(x))=1/(2+x^2) and
g(x)=2+x^2rArrg'(x)=2x
"---------------------------------------------------------------"
Substitute these values intocolor(green)" A"
rArrdy/dx=1/(2+x^2) xx2x=(2x)/(2+x^2)