How do you find dy/dx given y=ln(cos x)?

2 Answers

dy/dx=-tanx

Explanation:

Given:
y=ln(cosx)
Let
t=cosx
Then,
y=ln(t)
By chain rule
#dy/dx=dy/dt.dt/dx# #y=lnt dy/dt=1/t t=cosx dt/dx=-sinx Thus dy/dx=(1/t).(-sinx) t=cosx dy/dx=(1/cosx).(-sinx) dy/dx=-sinx/cosx dy/dx=-tanx#

Mar 9, 2018

dy/dx=-tanx

Explanation:

"differentiate using the "color(blue)"chain rule"

"Given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"

y=ln(cosx)

rArrdy/dx=1/cosx xxd/dx(cosx)

color(white)(rArrdy/dx)=-sinx/cosx=-tanx