How do you find f'(-1) using the limit definition given -5x^2+8x+2?

1 Answer
Feb 12, 2017

f(-1) = 18

Explanation:

The limit definition implies the formula f'(x) = lim_(h->0) (f(x + h) - f(x))/h.

f'(x) = lim_(h->0) (-5(x + h)^2 + 8(x + h) + 2 - (-5x^2 + 8x + 2))/h

f'(x) = lim_(h->0)(-5(x^2 + 2xh + h^2)+ 8x + 8h + 2 +5x^2 - 8x - 2)/h

f'(x) = lim_(h->0)(-5x^2 - 10xh - h^2 + 8x - 8x + 2 - 2 + 8h + 5x^2)/h

f'(x) = lim_(h->0) (-10xh + 8h)/h

f'(x) = lim_(h->0) (h(8 - 10x))/h

f'(x) = 8 - 10x

We can evaluate through substitution.

f'(-1) = 8 - 10(-1) = 18

Hopefully this helps!