How do you find f'(2) using the limit definition given 3/(x+1)3x+1?

1 Answer
Aug 8, 2016

The limit definition at a point is that the derivative of f(x)f(x) at x=ax=a is:

f'(a)=lim_(xrarra)(f(x)-f(a))/(x-a)

So here, where f(x)=3/(x+1) and a=2:

f'(2)=lim_(xrarr2)(3/(x+1)-3/(2+1))/(x-2)

f'(2)=lim_(xrarr2)(3/(x+1)-1)/(x-2)

f'(2)=lim_(xrarr2)(3/(x+1)-(x+1)/(x+1))/(x-2)

f'(2)=lim_(xrarr2)((3-(x+1))/(x+1))/(x-2)

f'(2)=lim_(xrarr2)(3-(x+1))/(x+1)(1/(x-2))

f'(2)=lim_(xrarr2)(-x+2)/(x+1)(1/(x-2))

f'(2)=lim_(xrarr2)(-(x-2))/(x+1)(1/(x-2))

f'(2)=lim_(xrarr2)(-1)/(x+1)

f'(2)=(-1)/(2+1)

f'(2)=-1/3