How do you find f'(2) using the limit definition given f(x)=4x^2f(x)=4x2?

2 Answers
Jan 3, 2017

[d/(dx) 4x^2]_(x=2) = 16[ddx4x2]x=2=16

Explanation:

By definition:

f'(2) = lim_(t->2) (f(t)-f(2))/(t-2) = lim_(t->2) (4t^2-16)/(t-2)=lim_(t->2) 4(t^2-4)/(t-2)=lim_(t->2)4 ((t-2)(t+2))/(t-2)=lim_(t->2)4 (t+2)=16

Jan 3, 2017

f'(2)=16

Explanation:

f(x)=4x^2
Find f'(x) then plug in 2 for x.
f'(x)=8x
f'(2)=8(2)
f'(2)=16