Let the function be f(x):
f'(x) = lim_(h ->0) (f(x + h) - f(x))/h
f'(x) = lim_(h->0) (1/((x + h)^2 - 1) - 1/(x^2 - 1))/h
f'(x) = lim_(h->0) (1/(x^2 + 2xh + h^2 - 1) - 1/(x^2 - 1))/h
f'(x) = lim_(h->0) ((x^2 - 1 - (x^2 + 2xh + h^2 - 1))/((x^2 - 1)(x^2 + 2xh + h^2 - 1)))/h
f'(x) = lim_(h->0) ((x^2 - 1-x^2 - 2xh-h^2+ 1)/((x^2 - 1)(x^2+ 2xh + h^2 - 1)))/h
f'(x) = lim_(h->0) (-2xh + h^2)/(h(x^4 + 2x^3h + x^2h^2 - x^2 - x^2-2xh-h^2 + 1))
f'(x) = lim_(h->0) (cancel(h)(-2x + h))/(cancel(h)(x^4 + 2x^3h + x^2h^2+ 2xh + h^2 + 1 - 2x^2)
Substituting:
f'(x) = (-2x + 0)/(x^4 + 2x^3(0) + x^2(0)^2 + 2x(0) + 0^2 + 1 - 2x^2)
f'(x) = -(2x)/(x^4 - 2x^2+ 1)
Hence, the derivative of f(x) = 1/(x^2 - 1) is f'(x) = -(2x)/(x^4 - 2x^2 + 1). All that we have left to do is plug in x = 3 into our derivative:
f'(3) = -(2 xx 3)/(3^4 - 2(3)^2 + 1)
f'(3) = -6/(81 - 18 + 1)
f'(3) = -6/(64)
f'(3) = -3/32
In summary, when f'(3) is evaluated inside the derivative of f(x) = 1/(x^2 - 1), a result of -3/32 is obtained.
Hopefully this helps!