How do you find f'(4) using the limit definition given f(x) = x+3?

1 Answer
Sep 18, 2017

see below

Explanation:

f'(x)=Lim_(hrarr0)(f(x+h)-f(x))/h

in this case

f(x)=x+3

applying the definition

f'(x)=Lim_(hrarr0)(cancel(x+3)+h-cancel((x+3)))/h

f'(x)=Lim_(hrarr0)h/h=Lim_(hrarr0)1=1

f'(x)=1:.f'(4)=1