How do you find f^5(0)f5(0) where f(x)=x/(1+x^2)f(x)=x1+x2?
1 Answer
Mar 14, 2017
Explanation:
We can first construct the Maclaurin series for the function:
1/(1-x)=sum_(n=0)^oox^n11−x=∞∑n=0xn
Replacing
1/(1+x^2)=sum_(n=0)^oo(-x^2)^n=sum_(n=0)^oo(-1)^nx^(2n)11+x2=∞∑n=0(−x2)n=∞∑n=0(−1)nx2n
Multiplying by
x/(1+x^2)=xsum_(n=0)^oo(-1)^nx^(2n)=sum_(n=0)^oo(-1)^nx^(2n+1)x1+x2=x∞∑n=0(−1)nx2n=∞∑n=0(−1)nx2n+1
We can write out the first terms of the Maclaurin series:
x/(1+x^2)=x-x^3+x^5-x^7+x^9+...
A general Maclaurin series is given by:
f(x)=sum_(n=0)^oo(f^((n))(0))/(n!)x^n
When
In the Maclaurin series for
x^5=f^((5))(0)/(5!)x^5
And:
f^((5))(0)=5! =120