The limit definition is given by the formula #f'(x) = lim_(h-> 0)(f(x + h) - f(x))/h#.
#f'(x) = lim_(h->0) (-2/(x + h + 1) - (-2/x + 1))/h#
#f'(x) = lim_(h-> 0) (-2/(x + h + 1) + 2/(x + 1))/h#
#f'(x) = lim_(h->0) ((-2(x + 1) + 2(x + h + 1))/((x + h + 1)(x + 1)))/h#
#f'(x) = lim_(h-> 0) ((-2x - 2 + 2x + 2h + 2)/((x + h + 1)(x + 1)))/h#
#f'(x) = lim_(h->0) (2h)/((x + h + 1)(x + 1)h)#
#f'(x) = lim_(h->0) (2)/((x + h + 1)(x + 1)#
We can evaluate now:
#f'(x) = 2/((x + 0 + 1)(x + 1))#
#f'(x) = 2/(x + 1)^2#
We now evaluate the derivative when #x= -5#:
#f'(-5) = 2/(-5 + 1)^2#
#f'(-5) = 2/16#
#f'(-5) = 1/8#
Hopefully this helps!