How do you find f'(-5) using the limit definition given f(x) = −2/(x + 1)?

1 Answer
Dec 21, 2016

f'(-5) = 1/8

Explanation:

The limit definition is given by the formula f'(x) = lim_(h-> 0)(f(x + h) - f(x))/h.

f'(x) = lim_(h->0) (-2/(x + h + 1) - (-2/x + 1))/h

f'(x) = lim_(h-> 0) (-2/(x + h + 1) + 2/(x + 1))/h

f'(x) = lim_(h->0) ((-2(x + 1) + 2(x + h + 1))/((x + h + 1)(x + 1)))/h

f'(x) = lim_(h-> 0) ((-2x - 2 + 2x + 2h + 2)/((x + h + 1)(x + 1)))/h

f'(x) = lim_(h->0) (2h)/((x + h + 1)(x + 1)h)

f'(x) = lim_(h->0) (2)/((x + h + 1)(x + 1)

We can evaluate now:

f'(x) = 2/((x + 0 + 1)(x + 1))

f'(x) = 2/(x + 1)^2

We now evaluate the derivative when x= -5:

f'(-5) = 2/(-5 + 1)^2

f'(-5) = 2/16

f'(-5) = 1/8

Hopefully this helps!