How do you find f'(-5) using the limit definition given f (x) = 5 cos(x)?

1 Answer
Jun 6, 2017

f'(-5)=-4.79

Explanation:

Recall the limit definition of a derivative is:

f'(x)-=lim_(h->0) ((f(x+h)-f(x))/h)

f'(x)=5 lim_(h->0) ((cos(x+h)-cosx)/h)

=5 lim_(h->0) ((cosxcos h-sinxsin h-cosx)/h)

=5 lim_(h->0) ((cosxcos h-cosx-sinxsin h)/h)

=5 lim_(h->0) ((cosx(cos h-1))/h -(sinxsin h)/h)

=5(cosx lim_(h->0) ((cos h-1)/h) -sinx lim_(h->0) (sin h/h) )

lim_(h->0) sin h/h=1

lim_(h->0) (cos h-1)/h=0

therefore5(cosx lim_(h->0) ((cos h-1)/h) -sinx lim_(h->0) (sin h/h) )

=-5sinx

f'(x)=-5sinx

f'(-5)=-5sin(-5)=-4.79

Note: the derivative of trig functions can only be evaluated as above given that x is in radians.