How do you find f^6(0) where f(x)=xe^x?

2 Answers
Feb 6, 2017

f^((6))(0)=(0+6)e^0=6.

Explanation:

f(x)=xe^x

By the Product Rule, f'(x)=x(e^x)'+(e^x)(x)'

:. f'(x)=xe^x+e^x=(x+1)e^x..........................(1)

This means that, {xe^x}'=(x+1)e^x.............(star)

"Now, "f''(x)={f'(x)}'={xe^x+e^x}'={xe^x}'+(e^x)'

=(x+1)e^x+e^x,....................[because, (star)]

:. f''(x)=(x+2)e^x...................................(2)

"As, "f''(x)=xe^x+2e^x," we have, by "(star),

f'''(x)={f''(x)}'={xe^x}'+(2e^x)'=(x+1)e^x+2e^x, i.e.,

f'''(x)=(x+3)e^x.......................................(3)#

"Generalising, "f^((n))(x)=(x+n)e^x, n in NN.

"In Particular, "f^((6))(x)=(x+6)e^x," giving,"

f^((6))(0)=(0+6)e^0=6.

Spread the Joy Maths.!

Mar 12, 2017

We can also use the Maclaurin series for e^x:

e^x=sum_(n=0)^oox^n/(n!)=1+x+x^2/(2!)+x^3/(3!)+x^4/(4!)+...

Multiplying this by x we see that:

xe^x=x(1+x+x^2/(2!)+x^3/(3!)+x^4/(4!)+...)=x+x^2+x^3/(2!)+x^4/(3!)+x^5/(4!)+...

Or:

xe^x=sum_(n=0)^oox^(n+1)/(n!)

A general Maclaurin series is given by:

f(x)=sum_(n=0)^oof^n(0)/(n!)x^n

So when n=6 the 6th term of any general Maclaurin series is f^6(0)/(6!)x^6.

Also note that the n=5 term of the f(x)=xe^x series is x^6/(5!).

Equating their coefficients:

f^6(0)/(6!)x^6=x^6/(5!)

f^6(0)=(6!)/(5!)=6