How do you find f'(x) using the definition of a derivative f(x)= 1/x?
1 Answer
Nov 1, 2015
Use limit definition of derivative to find:
f'(x) = -1/x^2
Explanation:
f'(x) = lim_(h->0) ((f(x+h)-f(x))/h)
= lim_(h->0) ((1/(x+h) - 1/x)/h)
= lim_(h->0) ((x-(x+h))/(hx(x+h)))
= lim_(h->0) ((-h)/(hx(x+h)))
= lim_(h->0) (-1/(x(x+h)))
=-1/x^2