How do you find f'(x) using the definition of a derivative f(x) =x^2 - 1f(x)=x21?

1 Answer
Apr 24, 2018

f'(x)=2x

Explanation:

The definition of a derivative is:
f'(x)=lim_(hto0)(f(x+h)-f(x))/h

Here, f(x)=x^2-1

f'(x)=lim_(hto0)((x+h)^2-1-x^2+1)/h

f'(x)=lim_(hto0)(x^2+2xh+h^2-x^2)/h

f'(x)=lim_(hto0)(2xh+h^2)/h

f'(x)=lim_(hto0)2x+h=2x+0=2x

f'(x)=2x for f(x)=x^2-1