How do you find f'(x) using the definition of a derivative f(x) = x+3f(x)=x+3?

1 Answer
Nov 3, 2015

Evaluate f'(x) =lim_(hrarr0)(f(x+h)-f(x))/h
to get f'(x) = 1

Explanation:

The definition of the derivative f'(x) is
color(white)("XXX")f'(x) = lim_(hrarr0)(color(red)(f(x+h))-color(blue)(f(x)))/h

If f(x) = x+3
this becomes
color(white)("XXX")f'(x)=lim_(hrarr0) (color(red)(((x+h)+3)) - color(blue)((x+3)))/h

color(white)("XXXXXX")=lim_(hrarr0) h/h

color(white)("XXXXXX")=lim_(hrarr0) 1

color(white)("XXXXXX")=1