How do you find f'(x) using the definition of a derivative f(x) =(x-6)^(2/3)f(x)=(x6)23?

2 Answers
Jan 11, 2017

Please see the explanation section below.

Explanation:

Use the fact that a^3-b^3 = (a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2), so a - b = (root3a-root3b)(root3a^2+root3(ab)+root3b^2)ab=(3a3b)(3a2+3ab+3b2)

Therefore the conjugate of a^(2/3)-b^(2/3)a23b23 is

a^(4/3)+a^(2/3)b^(2/3)+b^(4/3)a43+a23b23+b43.

And the product is a^2-b^2a2b2.

lim_(hrarr0)((x+6+h)^(1/3)-(x+6)^(1/3))/h

To save some space, let's do the algebra first, then find the limit.

((x+6+h)^(2/3)-(x+6)^(2/3))/h = ((x+6+h)^2-(x+6)^2)/(h((x+6+h)^(4/3)+(x+6+h)^(2/3)(x+6)^(2/3)+(x+6)^(4/3))

= (((x+6)+h)^2-(x+6)^2)/(h((x+6+h)^(4/3)+(x+6+h)^(2/3)(x+6)^(2/3)+(x+6)^(4/3))

= ((x+6)^2+2(x+6)(h)+h^2-(x+6)^2)/(h((x+6+h)^(4/3)+(x+6+h)^(2/3)(x+6)^(2/3)+(x+6)^(4/3)))

= (cancel(h)(2(x+6)+h))/(cancel(h)((x+6+h)^(4/3)+(x+6+h)^(2/3)(x+6)^(2/3)+(x+6)^(4/3)))

So, we have

lim_(hrarr0)((x+6+h)^(1/3)-(x+6)^(1/3))/h= lim_(hrarr0)(2(x+6)+h)/((x+6+h)^(4/3)+(x+6+h)^(2/3)(x+6)^(2/3)+(x+6)^(4/3))

= (2(x+6))/((x+6)^(4/3)+(x+6)^(2/3)(x+6)^(2/3)+(x+6)^(4/3))

= (2(x+6))/(3(x+6)^(4/3)

= 2/(3(x+6)^(1/3))

Jan 11, 2017

Use a^3 - b^3 = (a - b)(a^2 + ab + b^2) as a pattern to clear the 1/3 power from the numerator. Please see the explanation.

Explanation:

Use: f'(x) = lim_(hto0)(f(x+h)-f(x))/h

Given: f(x) = (x - 6)^(2/3), then f(x+h) = (x + h-6)^(2/3)

This notation can get hard to follow so I am going to make the following substitution:

Let a = f(x + h)
Let b = f(x)

f'(x) = lim_(hto0)(a-b)/h

We want the numerator to become a^3 - b^3, because that will change the power of each of the terms from 2/3 to 2. Therefore, we multiply by (a^2 + ab + b^2)/(a^2 + ab + b^2)

f'(x) = lim_(hto0)(a-b)/h(a^2 + ab + b^2)/(a^2 + ab + b^2)

The numerator becomes what we want:

f'(x) = lim_(hto0)(a^3-b^3)/(h(a^2 + ab + b^2))" [1]"

Now we work with the numerator so that we can make a factor of h cancel out the h in the denominator.

a^3 = (f(x + h))^3
a^3 = ((x + h - 6)^(2/3))^3
a^3 = (x + h - 6)^2
a^3 = x^2 +hx -6x + hx + h^2 - 6h -6x -6h - 36" [2]"

b^3 = (f(x))^3
b^3 = ((x - 6)^(2/3))^3
b^3 = (x - 6)^2
b^3 = x^2 - 12x - 36" [3]"

Subtract equation [3] from equation [2]:

a^3 - b^3 = x^2 +hx -6x + hx + h^2 - 6h -6x -6h - 36 - x^2 + 12x + 36

a^3 - b^3 = cancel(x^2 +)hx cancel(-6x) + hx + h^2 - 6h cancel(-6x) -6h cancel(- 36)cancel( - x^2) cancel(+ 12x)cancel( + 36)

a^3 - b^3 = 2hx + h^2 - 12h

a^3 - b^3 = h(2x + h - 12)" [4]"

Substitute the right side of equation [4] into the numerator of equation [1]:

f'(x) = lim_(hto0)(h(2x + h - 12))/(h(a^2 + ab + b^2))" [5]"

The h in the numerator cancels the h in the denominator:

f'(x) = lim_(hto0)(cancel(h)(2x + h - 12))/(cancel(h)(a^2 + ab + b^2))

We can let hto 0. This makes "a" become "b" so the denominator becomes 3b^2

f'(x) = (2x - 12)/(3b^2)

Substitute f(x) for b:

f'(x) = (2x - 12)/(3(f(x))^2)

Remove a factor of 2 from the numerator:

f'(x) = 2(x - 6)/(3(f(x))^2)

Remove a factor of 3 from the denominator:

f'(x) = 2/3(x - 6)/(f(x))^2

Substitute (x - 6)^(2/3) for f(x)

f'(x) = 2/3(x - 6)/(((x - 6)^(2/3))^2)

f'(x) = 2/3(x - 6)/((x - 6)^(4/3))

f'(x) = 2/3(x - 6)^(-1/3)

This is what we expected.