How do you find f'(x) using the definition of a derivative for f(x)= -7x^2 + 4x f(x)=7x2+4x?

1 Answer

See explanation

Explanation:

It is

f'(x)=lim_(h->0) ((f(x+h)-f(x))/h) => f'(x)=lim_(h->0)(-7*(x+h)^2+4(x+h)-(-7x^2+4x))/h=> f'(x)=lim_(h->0) ((-h(7h+2*(7x-2)))/h)=> f'(x)=lim_(h->0) (-(7h+2(7x-2)))=> f'(x)=-14x+4