How do you find f'(x) using the definition of a derivative for f(x)=sqrt(1+2x)f(x)=√1+2x?
1 Answer
Oct 8, 2015
Use definition:
f'(a) = lim_(h->0) (f(a+h) - f(a))/h
to find:
Explanation:
Let
Then the derivative at
f'(a) = lim_(h->0) (f(a+h) - f(a))/h
= lim_(h->0) (sqrt(1+2(a+h)) - sqrt(1+2a))/h
= lim_(h->0) (sqrt(1+2(a+h)) - sqrt(1+2a))/h * (sqrt(1+2(a+h)) + sqrt(1+2a))/(sqrt(1+2(a+h)) + sqrt(1+2a))
= lim_(h->0) (sqrt(1+2(a+h)) - sqrt(1+2a))/h * (sqrt(1+2(a+h)) + sqrt(1+2a))/(sqrt(1+2(a+h)) + sqrt(1+2a))
= lim_(h->0) ((1+2(a+h)) - (1+2a))/(h(sqrt(1+2(a+h)) + sqrt(1+2a)))
= lim_(h->0) (2color(red)(cancel(color(black)(h))))/(color(red)(cancel(color(black)(h)))(sqrt(1+2(a+h)) + sqrt(1+2a)))
= lim_(h->0) 2/(sqrt(1+2(a+h)) + sqrt(1+2a))
= 2/(sqrt(1+2a) + sqrt(1+2a))
= 1/sqrt(1+2a)
So